Development of distributed services - Project II

Jan Magne Tjensvold

October 29, 2007

Chapter 1

Project 11

1.1 Introduction

I choose to do all three assignments instead of just two because, quite frankly,
they were a bit easy. In each of the assignments all the business logic was
implemented as class libraries (compiles to .dll files) while the user interfaces
was implemented as console applications. The program code for each of the
assignments can be viewed in Appendix A at the end of the report.

I have learned a few new lessons while programming with C#. First of all
the documentation is lacking compared to Java. It is not as well organized
and at times it can be hard to find the information you are looking for. One
example is when I was trying to find out how to implement the IComparer
interface correctly. I wanted to find out which values I should return from
the Compare() method. Looking at the definition of the IComparer interface
in Visual Studio 2005 I got the following cryptic information.

// Returns:
// Value Condition Less than zerox is less than y.Zerox
// equals y.Greater than zerox is greater than y.

int Compare(T x, T y);

After some inspection I noticed that some spaces are missing, amongst
other things. It looks a bit amateurish, but I guess it will improve with
newer versions just like Java has done.

1.2 Assignment 1

Assignment 1 was about modeling a bottle and methods for filling, emptying
and pouring its contents to other bottles.

1.2.1 1b - Simple bottle client

The following is the console output for the bottle client from assignment 1b:

Bottle Client 1Db

Initial state
bottlel: 0/2
bottle2: 0/7

Step 1: Fill up bottle2
bottlel: 0/2
bottle2: 7/7

Step 2: Pour from bottle2 to bottlel
bottlel: 2/2
bottle2: 5/7

Step 3: Empty bottlel
bottlel: 0/2
bottle2: 5/7

At the end the 7 liter bottle contains 5 liter.

1.2.2 1c - Advanced bottle client

In assignment 1c I implemented three different methods for solving the prob-
lem. The last one is the most interesting one. It picks one of the methods at
random at each step and keeps on doing so until the 5 liter bottle contains
4 liter. The following is the console output for the program on a lucky day:

Bottle Client 1c

Initial state
bottlel: 0/3
bottle2: 0/5
Step 1: Fill bottle2 with 4 liters
bottlel: 0/3
bottle2: 4/5
Problem solved in 1 step

Solve by Predefined Steps

Initial state
bottlel: 0/3
bottle2: 0/5
Step 1: Fill up bottle2
bottlel: 0/3
bottle2: 5/5
Step 2: Pour from bottle2 to bottlel
bottlel: 3/3
bottle2: 2/5
Step 3: Empty bottle 1
bottlel: 0/3
bottle2: 2/5
Step 4: Pour from bottle2 to bottlel
bottlel: 2/3
bottle2: 0/5
Step 5: Fill up bottle2
bottlel: 2/3
bottle2: 5/5
Step 6: Pour from bottle2 to bottlel
bottlel: 3/3
bottle2: 4/5
Problem solved in 6 step

Solve by Randomization

Initial state
bottlel: 0/3
bottle2: 0/5

Step 1: Fill up bottle2
bottlel: 0/3
bottle2: 5/5

Step 2: Empty bottlel
bottlel: 0/3
bottle2: 5/5

Step 3: Fill up bottle2
bottlel: 0/3
bottle2: 5/5

Step 151: Empty bottle2

bottlel: 1/3
bottle2: 0/5
Step 152: Pour from bottlel to bottle2
bottlel: 0/3
bottle2: 1/5
Step 1563: Fill up bottlel
bottlel: 3/3
bottle2: 1/5
Step 154: Pour from bottlel to bottle2
bottlel: 0/3
bottle2: 4/5
Problem solved in 154 steps

On a bad day the output from the randomization solver will look more like
this:

Solve by Randomization

Initial state
bottlel: 0/3
bottle2: 0/5

Step 1: Fill up bottlel
bottlel: 3/3
bottle2: 0/5

Step 2: Empty bottlel
bottlel: 0/3
bottle2: 0/5

Step 3: Empty bottle2
bottlel: 0/3
bottle2: 0/5

Step 119036: Pour from bottlel to bottle2
bottlel: 0/3
bottle2: 1/5
Step 119037: Empty bottlel
bottlel: 0/3
bottle2: 1/5
Step 119038: Fill up bottlel
bottlel: 3/3
bottle2: 1/5
Step 119039: Pour from bottlel to bottle2

bottlel: 0/3
bottle2: 4/5
Problem solved in 119039 steps

1.3 Assignment 2

All the algorithms were implemented as a single class library. For assignment
2c¢ I choose to implement the binary search algorithm. For the initial bubble
sort run the array specified in the assignment was used:

Int[] tall = { 8, 4, 2, 6, 1 }

Later an array of 10 elements with random values is used. This means
that each time the program is run the results will be different. Below you
can see the output during one run of the console program:

BubbleSort

Sorting an array of integers:
Before: {8, 4, 2, 6, 1}
After: {1, 2, 4, 6, 8}

Doing a linear search with an array of integers:
Array: {1, 2, 3, 3, 2, 8, 1, 8, 4, 1}
The first occurrence of 2 was found at index 1 in the search array

Sorting another array of integers:
Before: {1, 2, 3, 3, 2, 8, 1, 8, 4, 1}
After: {1, 1,1, 2, 2, 3, 3, 4, 8, 8}

Doing a binary search with a sorted array of integers:
Array: {1, 1, 1, 2, 2, 3, 3, 4, 8, 8%
2 was found at index 4 in the search array

As you might notice the binary search algorithm finds the value 2 at index
4 instead of index 3, which is where it first occurs. This comes from the way
the binary search algorithm works with sorted arrays containing duplicate
values. See the program code for more detail.

1.4 Assignment 3

Assignment 3 revolved around the game of dice and the game of poker.

1.4.1 3a - Game of dice

Console output for a game of dice is shown below:

Dice Game

Enter starting cash: 100

Enter bet between 1 - 100 (0 to exit): 100
You won this round
Dice: 4 3 3 4 Cash: 200

Enter bet between 1 - 200 (0 to exit): 150
You won this round
Dice: 5 4 4 2 Cash: 350

Enter bet between 1 - 350 (0 to exit): 250
You won this round
Dice: 6 2 2 5 Cash: 600

Enter bet between 1 - 600 (0 to exit): 400
You won this round
Dice: 6 5 6 5 Cash: 1000

Enter bet between 1 — 1000 (0 to exit): 200
You lost this round
Dice: 6 4 3 1 Cash: 800

Enter bet between 1 - 800 (0 to exit): 250
You won this round
Dice: 3 4 3 5 Cash: 1050

Enter bet between 1 - 1050 (0 to exit): 400
You won this round
Dice: 2 6 3 4 Cash: 1450

Enter bet between 1 - 1450 (0 to exit): 800
You won this round
Dice: 4 4 5 3 Cash: 2250

Enter bet between 1 - 2250 (0 to exit): 2250
You lost this round
Dice: 1 5 5 1 Cash: O

1.4.2 3b - Poker

For the poker game I used standard one letter codes for ranks and suits.
Ranks go from A-1-2-...-9-T-J-Q-K and for the suits I used the first letter
in their name. For example ’Jd’ represents a jack of diamonds and ’6s’ is
a six of spades. I also decided to implement the full poker hand scoring
system as shown in Figure [1.1 on page 9|instead of the subset suggested in
the assignment.

In the program code the ranks, suits and scores are defined as enums.
Fach rank and suit is assigned a value on the form 2" to facilitate a quick
hand scoring algorithm. It uses the value of the ranks and suits of each
card and logically ORs them together. This is an idea ystein Johansen
presented to me and it appears to work very well for most scores. It does
include some additional complexities when you want to distinguish between
two pairs and three of a kind and between a full house and four of a kind.
Distinguishing a royal flush from a straight flush is also a bit tricky, as well
as finding ace-high straights in general. See the program code to find out
how these problems were solved.

The output of the basic poker program in action is shown below:

Poker Game

Hand: Ad 5h Td Js Qh
You have: High Card

Do you want to try again? (Y/N) y

Hand: Ad 6d 7s 7h 7c
You have: Three of a Kind

Do you want to try again? (Y/N) y

Hand: Ah 2d 3h 4h Ks
You have: High Card

Do you want to try again? (Y/N) y

Hand: As 4s 6h 6¢c 9s
You have: One Pair

Do you want to try again? (Y/N) y

Hand: 2d 3s 8s Ts Th

You have: One Pair
Do you want to try again? (Y/N) n

1.4.3 3c - Poker with card swapping

For assignment 3c swapping of cards during the game was added. See the
below console output of one such game session:

Poker Game With Card Swapping

Hand: 6d 9d Ks Kh Kd
You have: Three of a Kind

Type card numbers from 1 - 5 separated by space to swap (enter to skip)
12

New cards: 3s 3h

New hand: 3s 3h Ks Kh Kd
You now have: Full House

Nice improvement from three of a kind
Do you want to try again? (Y/N) y

Hand: 3d 7d Js Qd Ks
You have: High Card

Type card numbers from 1 - 5 separated by space to swap (enter to skip)
35

New cards: 3s Qs

New hand: 3s 3d 7d Qs Qd
You now have: Two Pair

Nice improvement from high card

Do you want to try again? (Y/N) n

PORKER

HAND RANKINGS

Royal Flush

Straight Flush
Four of a Kind

Full House

Flush

Straight

Three of a Kind

09 J¥ Q¥ KV AV
4% S 6% 7d 3

Ké KV K& K¢ 34
0 104 104 Ad Ad
Od K& 246 64 74
7% 346 94 104 TV
564 59 5& J¢ A¢

Two Pair
A4 AY 3% 34 J&
One Pair Q’ Q' 2' 8‘ 9*
@ Jeremy Voros (jeremyvoros@gmail.com) {some rights reserved} Creative Commons Attribution-Share Alike 30 License

Figure 1.1: Complete poker hand ranking/scoring

Appendix A

Program code

10

©CO~NOUITAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace Bottle

{

/

*x

* A class representing a bottle with certain contents and capacity.

*/

public class Bottle

{

private double capacity; // Maximum capacity of the bottle.
private double contents = 0; // Current contents in the bottle.
/**
* Creates a standard bottle with capacity of 1.
*/
public Bottle(): this(l)
{
}
/**
* Creates a bottle with the specified capacity.
*/

public Bottle(double capacity)

if (capacity <= 0) throw new ArgumentException(
""negative or zero capacity specified'”, "capacity');
this.capacity = capacity;

}
/~k~k
* Returns the total capacity of this bottle.
*/
public double TotalCapacity()
{
return capacity;
}
/~k~k
* Returns the remaining capacity of this bottle.
*/
public double RemainingCapacity()
{
return capacity - contents;
}
/~k~k
* Returns the current contents of the bottle.
*/
public double Content()
{
return contents;
}
/~k~k

* Fill the bottle to its maximum capacity. Returns the amount that was
* added to the original amount in order to fill it up.

*/

public double FillUp(Q

{

}

/**

* Fill the specified amount into the bottle. If the filling causes the
* pottle to exceed its capacity it will return the exceeding amount.
*/

public double Fill(double amount)

{

return capacity - Fill(capacity);

if (amount < 0) throw new ArgumentException(
"negative Fill amount specified”, "amount');

amount = contents + amount;

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

if (amount > capacity)

{
contents = capacity;
return amount - capacity;
}
else
{
contents = amount;
return O;
}
}
/**

* Empties the bottle and returns the amount the bottle contained
* before it was emptied.

*/

public double Empty()

double amount = contents;
contents = 0;
return amount;

/**

Pours the entire contents of this bottle into another bottle. If the
destination bottle has enough capacity left to take the entire
contents of this bottle then the resulting contents of this bottle
will be zero. If the destination bottle only has capacity enough to
take some of the contents from this bottle, then the destination
bottle will be filled to its maximum capacity and the remaining
contents will be kept in this bottle so that nothing is spilt.

ok ok o % % %

*/
public void Pourlnto(Bottle destination)

Pourlnto(destination, contents);

/**

Pours the specified amount of this bottle into another bottle. IT
the amount specified is more than the available contents in this
bottle the entire contents of this bottle is poured into the other
bottle if possible. If the destination bottle does not have enough
capacity left to take the specified amount from this bottle then the
destination bottle will be filled to its maximum capacity and the
remaining contents willW be kept in this bottle so that nothing is
spilt.

ok X ok X % ok X

*/
public void Pourlnto(Bottle destination, double amount)
{
if (contents < amount) amount = contents;
contents = contents - amount + destination.Fill(amount);

}

/**
* Pours from the source bottle to this bottle.
* See pourlnto(Bottle) for more formation.

public void PourFrom(Bottle source)

// 1 would have preferred to only define Pourlnto(Bottle), but

// assignment la defines PourFrom(Bottle) which is counterintuitive
// in my opinion. When you hold a real bottle it"s not physically
// possible to make a bottle you®"re not holding pour its content

// into your own bottle. At least not without external help. In my
// opinion this method defies logic, but luckly it doesn"t need any
// real logic since it"s easily mapped to Pourlnto(Bottle).
source.Pourlnto(this);

/**

* Pours a certain amount from the source bottle to this bottle.
* See pourlnto(Bottle, double) for more formation.

*/

public void PourFrom(Bottle source, double amount)

{

151
152
153
154
155
156
157
158
159
160
161

}

source.Pourlnto(this, amount);

public override string ToString()

{
}

return contents + /" + capacity;

{

OCO~NOOUTDAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace BottleClientlb

using Bottle;

/

**

* A program using the bottle class as described in assignment 1b.

*/

class Program

{

// Initialize the two bottles.
static Bottle bottlel = new Bottle(2.0);
static Bottle bottle2 = new Bottle(7.0);

static void Main(string[] args)

{

}
/

**

Console WriteLine(Q);
Console.WriteLine("Bottle Client 1b™);
Console. WriteLine(M'=========="");
Console.WriteLine();

Console.WriteLine("Initial state™);
WriteBottlelnfo();

Consolle . WriteLine("Step 1: Fill up bottle2");
bottle2_ FillUp(Q);
WriteBottlelnfo();

Console_WriteLine(""Step 2: Pour from bottle2 to bottlel™);
bottle2._Pourlnto(bottlel);
WriteBottlelnfo();

Consolle WriteLine("'Step 3: Empty bottlel™);
bottlel_Empty();
WriteBottlelnfo();

* Prints out information about the two bottles to the console.

*/

static void WriteBottlelnfo()

{

Consolle WriteLine(™ bottlel: " + bottlel);
Console.WriteLine(" bottle2: " + bottle2);

©CO~NOUITAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace BottleClientlc

{
using Bottle;

/**
* A program using the bottle class to solve the problem in assignment lc.
*/
class Program
{
static Bottle bottlel;
static Bottle bottle2;

static void Main(string[] args)

{
Console.WriteLine();
Console_WriteLine("Bottle Client 1c");
Console.WriteLine("=========="");
Console_WriteLine();

SolveByPrecognition();
SolveByPredefinedSteps();
SolveByRamdomization();

}

/**
* Initializes bottlel with a capacity of 3 liters and bottle2 with a
* capacity of 5 liters.

*/
static void Initialize()
{
bottlel = new Bottle(3.0);
bottle2 = new Bottle(5.0);
Console_WriteLine("Initial state™);
WriteBottlelnfo();
}
/**
* Prints out information about the two bottles to the console.
*/
static void WriteBottlelnfo()
{
Console_WriteLine(" bottlel: " + bottlel);
Console.WriteLine(" bottle2: " + bottle2);
}
/**
* Given that assignment la gives room for additional helper methods
* Bottle.Fill(double) was implemented to simplify the code. This was
* done before it was made apparent that its functionality would fit
* perfectly for l1lc. However 1c does not specify the Fill(double)
* method as one of the legal methods which can be used. Still, it"s a
* perfect way to solve the problem. Short, concise and to the point.
*/
static void SolveByPrecognition()
{
Console_WriteLine();
Console_WriteLine("Solve by Precognltlon")'
Console_WriteLine("----—-—-—- ")
Console.WriteLine();
Initialize();
Console_WriteLine("Step 1: Fill bottle2 with 4 liters");
bottle2 Fill(4);
WriteBottlelnfo();
Console_WriteLine("Problem solved in 1 step™);
}
/**

* To stay within the bounds of the assignment a set of predefined
* steps using the specified methods was discovered reasonably easy.

76 */

77 static void SolveByPredefinedSteps()

78 {

79 Console WriteLine(Q);

80 Console_WriteLine("Solve by Predeflned Steps™);

81 Console. WriteLine("-----——--—- ")

82 Console.WriteLine();

83 Initialize();

84

85 Console WriteLine("Step 1: Fill up bottle2");

86 bottle2 . FillUp(Q);

87 WriteBottlelnfo();

88

89 Console._WriteLine('Step 2: Pour from bottle2 to bottlel™);
920 bottlel.PourFrom(bottle2);

91 WriteBottlelnfo();

92

93 Console_WriteLine("'Step 3: Empty bottle 1");

94 bottlel _Empty(Q);

95 WriteBottlelnfo();

96

97 Console._WriteLine('Step 4: Pour from bottle2 to bottlel™);
98 bottlel.PourFrom(bottle2);

99 WriteBottlelnfo();

100

101 Console . WriteLine("Step 5: Fill up bottle2"™);

102 bottle2 . FillUp(Q);

103 WriteBottlelnfo();

104

105 Console._WriteLine(""'Step 6: Pour from bottle2 to bottlel™);
106 bottlel.PourFrom(bottle2);

107 WriteBottlelnfo();

108

109 Consolle WriteLine("Problem solved in 6 step™);
110 3}

111

112 /**

113 * Or we can just let the problem solve itself. Just pick an operation
114 * at random and see if the problem has been solved. It won"t exactly
115 * give an optimal solution, but in time it should get the job done.
116 * Eventually. ..

117 */

118 static void SolveByRamdomization()

119 {

120 Console.WriteLine();

121 Console._WriteLine('Solve by Randomlzatlon")

122 Console WriteLine("----—-—-—- ");

123 Console WriteLine(Q);

124 Initialize();

125

126 Random ran = new Random();

127 uint step = 0;

128

129 // Loop until the problem is solved.

130 do

131 {

132 step++;

133 Console Write("'Step " + step + ": ");

134 // Pick an operation at random.

135 switch (ran.Next(0, 6))

136 {

137 case O:

138 Console.WriteLine("Fill up bottlel™);
139 bottlel.FillUp();

140 break;

141 case 1:

142 Console.WriteLine("Fill up bottle2™);
143 bottle2.FillUp();

144 break;

145 case 2:

146 Console.WriteLine("Empty bottlel™);
147 bottlel.Empty();

148 break;

149 case 3:

150 Console.WriteLine("Empty bottle2™);

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

bottle2_Empty(Q);
break;
case 4:
Console._WriteLine("Pour from bottlel to bottle2"™);
bottle2.PourFrom(bottlel);
break;
case 5:
Console_WriteLine(""Pour from bottle2 to bottlel™);
bottlel.PourFrom(bottle2);
break;

WriteBottlelnfo();

}
while (bottle2.Content() != 4);

Consolle WriteLine(""Problem solved in + step + steps™);

OCO~NOOUTDAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace Algorithms

{

/

**

* A small collection of sorting and searching algorithms.

*/

public class Algorithms

{

/

*x

* Use the Bubble sort algorithm to

* ascending order.
*/

sort a list of integers in

public static void BubbleSort(int[] list)

{

}
/

public static void Swap(int[] list,

{

}
/

public static int LinearSearch(int[]

{

public static int BinarySearch(int[] list,

{

< i;

VA=

**

t.Length - 1; 1 > 0; i--)
i i; j++)
list[j + 1]) Swap(list, j, j + 1);

* Swap the elements at index a and b in the list.

*/

int temp =
list[a] =
list[b] =

list[a];
list[b];
temp;

**

int a,

int b)

* Does a linear search through an array of integers and returns the

* index of the first occurrence of the specified value.

* cannot be found it returns -1.
*/

for (int 1 = 0;
if (list[i]
return -1;

i < list.Length;
value) return

IT the value

list, int value)

i++)
i;

* Does a binary search through a sorted array of integers and returns

* the index of the specified value.

IT the value being searched for

* occurs multiple times (in sequence) this algorithm will may not

* return
* found
*/

it returns -1.

int low = 0;
int high = list.Length - 1;
int mid;

while (low <= high)

{
mid = (low + high) /7 2;
it (list[mid] > value)
high = mid - 1;
else if (list[mid] < value)
low = mid + 1;
else
return mid;
s
return -1;

the index of the first occurrence.

IT the value cannot be

int value)

OCO~NOOOTAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace BubbleSort

{

using Algorithms;

/**

* A program to show how the sorting and searching algorithms are used.

*/

class Program

{

static void Main(string[] args)
{

Console WriteLine(Q);
Console.WriteLine("BubbleSort™);
Console WriteLine(M'=========="");
Console WriteLine(Q);
Console.WriteLine("Sorting an array of integers:");
int[] sort = {8, 4, 2, 6, 1};
Console._WriteLine("Before: " + ArrayToString(sort));
Algorithms.BubbleSort(sort);
Console WriteLine("After: " + ArrayToString(sort));
Console.WriteLine();
Consolle._WriteLine(

"Doing a linear search with an array of integers:");
Random ran = new Random();
int[] search = RandomArray(10, O, 9, ran);
Console.WriteLine("Array: " + ArrayToString(search));
int value = ran_.Next(0, 10);
int result = Algorithms.LinearSearch(search, value);
if (result < 0)

Consolle.WriteLine(""No occurrence of " + value

+ " was not found in the search array™);
else
Console.WriteLine("The first occurrence of " + value
+ " was found at index " + result + " in the search array");
Console WriteLine(Q);
Console.WriteLine("Sorting another array of integers:™);
Console.WriteLine("Before: " + ArrayToString(search));
Algorithms.BubbleSort(search);
Console.WriteLine("After: " + ArrayToString(search));
Console WriteLine(Q);
Console.WriteLine(

"Doing a binary search with a sorted array of integers:');
Console.WriteLine("Array: " + ArrayToString(search));
result = Algorithms.BinarySearch(search, value);
if (result < 0)

Consolle.WriteLine(""No occurrence of " + value

+ " was not found in the search array™);
else
Console.WriteLine(value + " was found at index " + result
+ " in the search array');
}
/**
* Create an array of the given size with random values.
*/

static int[] RandomArray(uint size, int min, Int max, Random random)

int[] array = new int[size];
for (uint i = 0; 1 < size; i++) array[i] = random.Next(min, max + 1);
return array;

}

/**
* Convert an array of integers to a string.
*/

static String ArrayToString(int[] list)

{

StringBuilder sbh =
for (uint i = 1; 1 < list.Length;
sb.Append('}"");

return sb.ToString(Q);

new StringBuilder("{" + list[0]);

i++) sb.Append(”,

"+ list[i]);

OCO~NOOUTDAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace DiceGame

{

/**
* A six sided die.

public class Die

{

private static Random random = new Random();
private int lastValue = -1;

/**

* Roll the die. It returns the resulting value.
*/

public int Roll()

lastValue = random.Next(1, 7);
return lastValue;

}
/**

* Read the last value of the die. If it has never been rolled

* value will be -1.
*/
public int LastValue()
{

}
/**

return lastValue;

the last

* Returns a string representation of the current state of the die.

*/
public override string ToString()

{
}

return lastValue.ToString();

1 using System;
2 using System.Collections.Generic;
3 using System.Text;

5
6
y
8

9
10
11
12
13
14
15
16
17
18

n
{

amespace DiceGame

/

*x

* A game of dice.

*/

public class DiceGame

{

private const uint DICE_COUNT = 4;
private const int DIE_LOSE = 1;

private Die[] dice = new Die[DICE_COUNT];
private uint cash;

/**
* Creates a game with 100 cash.
*/

public DiceGame(): this(100)

{

}

/**

* Creates a game with the specified amount of starting cash.
*/
public DiceGame(uint startingCash)

{
if (startingCash == 0) throw new ArgumentException(
"starting cash cannot be zero', "startingCash™);
cash = startingCash;
for (int 1 = 0; i < dice.Length; i++)
dice[i] = new Die(Q);
}
/**

* Places a bet and rolls the dice. The bet must be a non-zero amount,
* pbut not larger than the current cash balance. The player lose if at
* least one die is 1, otherwise the player wins. Returns true if the
* player won and false if the player lost.
*/
public bool BetAndRoll(uint bet)
{
if (bet > cash) throw new ArgumentException(
"cannot bet more than current cash balance', "bet");
if (bet == 0) throw new ArgumentException(
"cannot bet zero cash', "bet');

bool win = true;
foreach (Die die in dice)

{
int value = die.Roll();
if (value == DIE_LOSE) win = false;
}
if (win)
cash += bet;
else
cash -= bet;

return win;

s

/**

* Returns the current cash balance.
*/

public uint Cash()

{

return cash;
s
/**

* Returns the last value of the specified die. The game has DICE_COUNT
* dice so only an index of O to DICE_COUNT - 1 is valid.

*/
public int DieValue(int index)
{

}

/**

* Returns a string representation of the current state of the game.
*/

public override string ToString()

return dice[index].LastValue();

{
StringBuilder sb = new StringBuilder(*'Dice: ");
foreach (Die die in dice) sb.Append(die + "™ ");
sb.Append(*'Cash: ");
sb.Append(cash);
return sb.ToString(Q);

}

OCO~NOOOTAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleDiceGame

{

using DiceGame;

/**
* A console based game of dice.
*/
class Program
{
static void Main(string[] args)
{
Console WriteLine(Q);
Console.WriteLine("'Dice Game™);
Console WriteLine(M'=========="");
Console.WriteLine(Q);

uint cash;
do
Console.Write("Enter starting cash: ");
while (luint.TryParse(Console.ReadLine(), out cash) || cash

DiceGame game = new DiceGame(cash);
Console.WriteLine();

// Main game loop.
do

uint bet;
do
Console Write("Enter bet between 1 - " + game.Cash()
+ " (0 to exit): ");
while (luint.TryParse(Console.ReadLine(), out bet)
|1 bet > game.Cash(Q));

if (bet == 0) break;
if (game.BetAndRoll(bet))
Console.WriteLine("You won this round™);
else
Console.WriteLine("You lost this round™);

Console.WriteLine(game);
Console WriteLine(Q);

}
while (game.Cash() > 0);

0);

OCO~NOOUTDAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace Cards

{

/**
* A playing card.

public class Card : IComparable<Card>

{

private Deck.Suilt suit;
private Deck.Rank rank;

/**
* Create a card with the given suit and rank.
*/

public Card(Deck.Suit suit, Deck.Rank rank)

{

this.suit
this.rank

suit;
rank;

}

/**
* Return the suit of this card.
*/

public Deck.Suit SuitQ)

{

}

/**
* Return the rank of this card.
*/

public Deck.Rank Rank(Q)

{

}

public int CompareTo(Card other)
{

return suit;

return rank;

int diff = rank - other.rank;
if (diff == 0) diff = suit - other.suit;
return diff;

s

public override bool Equals(Object obj)

{
return (suit.Equals(obj) && rank.Equals(obj));

}

public override int GetHashCode()

{ return suit.GetHashCode() * rank.GetHashCode();
}

public override string ToString()

; return RankToString(rank) + SuitToString(suit);

public static String RankToString(Deck.Rank rank)

{
switch (rank)

case Deck.Rank.Ace: return "A";
case Deck.Rank.Deuce: return "2";
case Deck.Rank.Three: return "3";
case Deck.Rank.Four: return "4";
case Deck.Rank.Five: return "5";
case Deck.Rank.Six: return "6";
case Deck.Rank.Seven: return "7'";
case Deck.Rank.Eight: return "8";
case Deck.Rank.Nine: return "9";
case Deck.Rank.Ten: return T";

}

public static String SuitToString(Deck.Suit sult)

{

case
case
case

}

throw new ArgumentException("invalid rank specified”, "rank™);

Deck.Rank.Jack:

Deck.Rank.Queen: return "Q

Deck.Rank.King:

switch (suit)

case
case
case
case

}

throw new ArgumentException("invalid suit specified”, "suit");

Deck.Suit.Spades:
Deck.Suit.Hearts:
Deck.Suit.Diamonds:
Deck.Suit.Clubs:

return ""J";

return "K";

return "

return
return
return

1 using System;
2 using System.Collections.Generic;
3 using System.Text;

4

5 namespace Cards

6 {
-

8

/**
* A hand of playing cards drawn from a deck.

public class Hand

{

public const int HAND _SIZE = 5;

private Card[] cards = new Card[HAND_SIZE];
private Deck deck;

/**

* Creates a hand by drawing cards from the specified deck.
*/

public Hand(Deck deck)

{
this.deck = deck;
for (int i = 0; 1 < HAND_SIZE; i++)
cards[i] = deck.Draw();
Array.Sort(cards);
¥
public Hand(Card[] cards)
{
this.cards = cards;
}
/**

* Swap the cards at the specified indices in the card list. The new

* cards are drawn before the old ones are placed back in the deck.

* This prevents the player from accidentally drawing one of the cards
* he is trying to sway. The list of the new cards drawn from the deck
* iIs returned.

*/

public Card[] SwapCards(uint[] cardindex)

Card[] newCards
for (int i = 0;
newCards[i]

new Card[cardlindex.Length];
< cardlIndex.Length; i++)
deck.Draw();

// Put back old cards and replace them with the new ones.
for (int 1 = 0; i < cardIndex.Length; i++)

{
uint index = cardIndex[i];
deck.PutBack(cards[index]);
cards[index] = newCards[i];
}

Array.Sort(cards);
Array.Sort(newCards);

return newCards;

}

/**

* Returns an array of all the cards in the hand.
*/

public Card[] Cards(Q

{

}

/**
* Puts all the cards in this hand back into the deck. After calling
* this method you will be unable to use the hand because all the cards
* will be removed.
*/
public void PutBack()
{

return cards;

foreach (Card card in cards)
deck.PutBack(card);

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

}

cards = null;
deck = null;

public Deck.Score ScoreHand()

{
}

return ScoreHand(this);

public static Deck.Score ScoreHand(Hand hand)

{

Deck.Suit suitBits
Deck.Rank rankBits

0;
0;

for (int i = 0; 1 < HAND_SIZE; i++)

}

rankBits |= hand.cards[i]-Rank(Q);
suitBits |= hand.cards[i]-Suit();

uint rankSeqSize, rankSeqEnd;
uint numRanks = BitCount((uint)rankBits,

(uint)Enum.GetValues(typeof(Deck.Rank)) .Length,
out rankSeqSize, out rankSeqEnd);

uint numSuits = BitCount((uint)suitBits,

(uint)Enum.GetValues(typeof(Deck.Suit)).Length);

switch (numRanks)

{

// 1T the number of different ranks is less than 5 then we
// have at least one pair and the possible scores are:
// OnePair, TwoPair, ThreeOfAKind, FullHouse and FourOfAKind.
case 4:
return Deck.Score.OnePair;
case 3: // TwoPair or ThreeOfAKind
if (RankCount(hand) == 2)
return Deck.Score.TwoPair;
else
return Deck.Score.ThreeOfAKind;
case 2: // FullHouse or FourOfAKind
if (numSuits == 3 || RankCount(hand) == 3)
return Deck.Score.FullHouse;
else
return Deck.Score.FourOfAKind;
case 5:
// Possible scores:
// HighCard, Straight, Flush, StraightFlush and RoyalFlush.

bool flush = (numSuits == 1);
bool straight = (rankSeqgSize == HAND_SIZE);

// Special check for ace-high straight.
if (rankSeqSize == HAND_SIZE - 1
&& rankSeqEnd == Enum.GetValues(typeof(Deck.Rank)).Length

&& (rankBits & Deck.Rank.Ace) == Deck.Rank.Ace)
{
if (flush)
return Deck.Score.RoyalFlush;
else
return Deck.Score.Straight;
b

if (straight && flush)
return Deck.Score.StraightFlush;
else if (straight)
return Deck.Score.Straight;
else if (flush)
return Deck.Score.Flush;
else
return Deck.Score.HighCard;
default:
throw new ApplicationException(
"unable to determine hand score™);

151

152 /**

153 * Returns the number of 1 bits in an unsigned integer along with the
154 * size of the largest sequence of consecutive 1 bits and on which bit
155 * the sequence ends. The bit index is counted from the least
156 * significant bit, which is 1, to the most significant bit, which is
157 * 32.

158 */

159 private static uint BitCount(uint val, uint maxBits,

160 out uint maxSequence, out uint endSequence)

161 {

162 if (maxBits > 32) throw new ArgumentException(

163 "maximum number of bits cannot exceede 32", "maxBits");
164

165 uint bits = 0;

166 uint curSequence = 0;

167 maxSequence = O;

168 endSequence = 0;

169

170 for (uint 1 = 0; i < maxBits; i++)

171 {

172 if ((val & 1) == 1)

173 {

174 bits++;

175 curSequence++;

176 if (curSequence > maxSequence)

177 {

178 maxSequence = curSequence;

179 endSequence = (i + 1);

180 }

181 }

182 else

183 curSequence = 0;

184

185 val >>= 1;

186

187 return bits;

188 }

189

190 /**

191 * Returns the number of 1 bits in an unsigned integer.

192 */

193 private static uint BitCount(uint val, uint maxBits)

194 {

195 uint x, y;

196 return BitCount(val, maxBits, out x, out y);

197 }

198

199 /**

200 * Counts the number of ranks which occurs most often in this hand.
201 */

202 private static uint RankCount(Hand hand)

203

204 uint[] bucket = new uint[(uint)Enum

205 .GetValues(typeof(Deck.Rank)) .Length];

206 uint max = 0;

207

208 foreach (Card card in hand.cards)

209 {

210 uint index = (uint)Math.Log((double)card.Rank(), 2);
211 uint test = ++bucket[index];

212 if (test > max)

213 max = test;

214 }

215 return max;

216 }

217

218 /**

219 * Returns a string representation of the hand.

220 */

221 public override string ToString()

222 {

223 StringBuilder sb = new StringBuilder(cards[0].ToString(Q));
224 for (int i = 1; 1 < cards.Length; i++)

225 sb.Append(" " + cards[i]);

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

return sb.ToString();
3

public static String ScoreToString(Deck.Score score)

switch (score)
{
case Deck.Score.HighCard: return "High Card";
case Deck.Score.OnePair: return "One Pair";
case Deck.Score.TwoPair: return "Two Pair';
case Deck.Score.ThreeOfAKind: return "Three of a Kind";
case Deck.Score.Straight: return "Straight”;
case Deck.Score.Flush: return "Flush";
case Deck.Score.FullHouse: return "Full House';
case Deck.Score.FourOfAKind: return "Four of a Kind";
case Deck.Score.StraightFlush: return "Straight Flush";
case Deck.Score.RoyalFlush: return "Royal Flush";

}

throw new ArgumentException("invalid score specified”, "score™)

©CO~NOUITAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace Cards

{

/

**

* A deck of playing cards.

*/

public class Deck

{

/** Card suits. */
public enum Suit

{
Spades = Ox1,
Hearts = 0ox2,
Diamonds = 0x4,
Clubs = 0x8,
b

/** Card ranks. */
public enum Rank

{
Ace = ox1,
Deuce = 0x2,
Three = 0x4,
Four = 0x8,
Five = 0x10,
Six = 0x20,
Seven = 0x40,
Eight = 0x80,
Nine = 0x100,
Ten = 0x200,
Jack = 0x400,
Queen = 0x800,
King = 0x1000,

3

/** Hand score. */
public enum Score

{
HighCard = 1,
OnePair = 2,
TwoPair = 3,
ThreeOfAKind = 4,
Straight = 5,
Flush = 6,
FullHouse = 7,
FourOfAKind = 8,
StraightFlush = 9,
RoyalFlush = 10,

H

private List<Card> cards = new List<Card>(
Enum.GetValues(typeof(Suit)).Length
* Enum.GetValues(typeof(Rank)).Length);

private Random random = new Random();

/**

* Create a deck with the standard set of cards.
*/

public Deck(Q)

{
foreach (Suit suit in Enum.GetValues(typeof(Suit)))
foreach (Rank rank in Enum.GetValues(typeof(Rank)))
cards.Add(new Card(suit, rank));
}
/**

* Draw a card from the deck. This returns the card by first
* it from the deck.

*/

public Card Draw()

{

removing

76 int index = random.Next(0, cards.Count);
77 Card card = cards[index];

78 cards.RemoveAt(index);

79 return card;

80 }

82 /**

83 * Puts a card back into the deck.
84 */

85 public void PutBack(Card card)

87 if (cards.Contains(card))
88 throw new ArgumentException(*card is already in deck™, "card");

90 cards.Add(card);
91 }

93 /**

94 * Deal the specified number of hands from this deck.

95 */

96 public Hand[] Deal(uint numHands)

97 {

98 if (numHands == 0)

99 throw new ArgumentException(‘'cannot draw zero hands', "numHands');

101 Hand[] hands = new Hand[numHands];
102 for (int 1 = 0; i < hands.Length; i++)
103 hands[i] = new Hand(this);

104

105 return hands;

106 3}

107

108

109 }

110 }

111

OCO~NOOUTDAWNE

using System;

using System.Collections.Generic;
using System.Text;

namespace ConsolePokerGame

{

using Cards;

/

**

* A console based poker game.

*/

class Program

{

static void Main(string[] args)

{

Console WriteLine(Q);
Console.WriteLine(""Poker Game™);
Console WriteLine(M'=========="");

Deck deck = new Deck();
bool retry = true;

// Main game loop.
while (retry)

Hand hand = deck.Deal(1)[0];

Console.WriteLine();

Consolle WriteLine(""Hand: " + hand);

Deck.Score score = hand.ScoreHand();

Console.WriteLine("You have: " + Hand.ScoreToString(score));
Console.WriteLine();

Console. Write("'Do you want to try again? (Y/N) ");
retry = Console.ReadLine().ToUpperinvariant().Equals('Y'");
hand.PutBack(); // Be nice and put the hand back into the deck.

©CO~NOUITAWNE

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsolePokerGameWithSwap

{

using Cards;

/**

* A console based poker game where you can swap cards.

*/

class Program

{

static void Main(string[] args)

{

Console_WriteLine(Q);
Console.WriteLine(""Poker Game With Card Swapping™);
Console WriteLine(M'=========="");

Deck deck = new Deck();

bool retry = true;
// Main game loop.
while (retry)

Hand hand = deck.Deal(1)[0];

Console.WriteLine();

Console._WriteLine(""Hand: " + hand);

Deck.Score score = hand.ScoreHand();

Console.WriteLine(""You have: " + Hand.ScoreToString(score));
Console.WriteLine();

// Card swap loop.
bool parseError = true;
while (parseError)

Console.WriteLine("Type card numbers from 1 - 5 separated "
+ "by space to swap (enter to skip)");

string swap = Console.ReadLine();

if (swap.Trim().Length == 0) break;

uint[] indices = TryParse(swap);

if (indices == null) continue;

parseError = false;

Card[] newCards = hand.SwapCards(indices);
Console_WriteLine(Q);

Console.Write("New cards:");

foreach (Card card in newCards) Console.Write(" " + card);
Console.WriteLine();

Console.WriteLine();
Console WriteLine(""New hand: " + hand);
Deck.Score newScore = hand.ScoreHand();
Console._WriteLine("You now have: "

+ Hand.ScoreToString(newScore));

// Improvement comments.
Console_WriteLine(Q);
if (newScore > score)
Console_WriteLine('Nice improvement from
+ Hand.ScoreToString(score).ToLower());
else 1If (newScore == score)
Console.WriteLine("That didn"t help much.™);
else
Console_WriteLine("You"re supposed to swap to improve
+ "your hand. Not ruin it.");

Console_WriteLine(Q);

}

Console.Write(""Do you want to try again? (Y/N) ");
retry = Console.ReadLine().ToUpperinvariant().Equals('Y");
hand.PutBack(); // Be nice and put the hand back into the deck.

7 /**

78 * Tries to parse a list of card indices. If any errors are detected it
79 * simply returns null.

80 */

81 public static uint[] TryParse(String input)

82 {

83 char[] delims = {* *, ","};

84 string[] parts = input.Split(delims, Hand.HAND_SIZE,

85 StringSplitOptions.RemoveEmptyEntries);

86

87 if (parts == null || parts.Length == 0)

88 return null;

89

90 List<uint> indices = new List<uint>(parts.Length);

91

92 // Parse each index.

93 foreach (string index in parts)

94 {

95 uint result;

96 if (luint.TryParse(index.Trim(), out result)) return null;
97 result--; // Zero based index in code, but not in input.
98 if (result < 0 || result > Hand.HAND_SIZE) return null;
99 if (indices.Contains(result)) return null;

100 indices.Add(result);

101 }

102 return indices.ToArray();

103 }

104 3}

105 }

106

	1 Project II
	1.1 Introduction
	1.2 Assignment 1
	1.2.1 1b - Simple bottle client
	1.2.2 1c - Advanced bottle client

	1.3 Assignment 2
	1.4 Assignment 3
	1.4.1 3a - Game of dice
	1.4.2 3b - Poker
	1.4.3 3c - Poker with card swapping

	A Program code

