Petri net modeling and simulation of a distributed
computing system

Jan Magne Tjensvold

October 19, 2007

1 Introduction

This Petri net model, simulation and analysis project has been inspired by
the author’s current work in the Generic Distributed Exact Cover Solver
(DECS) [1] project. DECS details the implementation of a distributed com-
puting system to solve exact cover problems by using Donald Knuth’s Danc-
ing Links (DLX) [2] algorithm. Figure|l on the following page| provides the
basic architecture of this distributed computing system.

DECS mainly works by dividing a problem into smaller pieces and through
distributed computing middleware it distributes these pieces to a collection
of client systems. It uses a system called BOINC [3] to handle the work
distribution and result collection process. In BOINC the clients send HTTP
GET and PUT messages to a web server in order to download more work
and upload the results.

2 Model

The Petri net model is based on the architecture as shown in Figure
[on the next pagel In order for the simulation to be useful the complete re-
quest /response cycle needs to be modeled. The firing times of the transitions
will also have to be determined by research and testing.

2.1 Assumptions

To begin with we have to make a few assumptions regarding the system we
are trying to model. We do this in order to make the model simple and easy
to understand. Because we are dealing with a distributed system we need
to be aware of the most common pitfalls we might encounter. From “The
eight fallacies of distributed computing” [4] the following assumptions apply
to our model:

e The network is reliable.

Problem

Solution

Application Polyomino tiling, sudoku, Application specific
n queens, set packing, presentation of the
set partitioning, etc. solution.
Request Response
Transform Reverse Transform
Transformation Transformation from Transform the solutions
specific problem into a back into a form suitable
generic DLX matrix for the specific problem
Generalize Specialize
Divide Merge
libdecs Divide the problem Place all the solutions
into multiple smaller in a common place
work units ready to be transformed
Recurse lterate
Distributed Distribute Collect
: Distribute the work units Get solutions from each
m n
co.ddF:Ut g to systems sharing their system until all work units
mi eware computational power have been processed
Propagate Aggregate
. Conquer
Computatlon Process the work units

on each system to find
all available solutions

Compute

Figure 1: Generic Distributed Exact Cover Solver system architecture

e Topology does not change.

We assume that all the hardware and the software in the distributed
system is reliable. Without this assumption we would have to take into
account all sorts of failure scenarios. The model also assumes that the
network topology does not change significantly. BOINC itself can deal with
several different changes to topology, like disconnected clients and wireless
roaming clients, etc., but to make the model simple we assume that the
clients are always reachable through the network.

However, there are some of the eight fallacies we do NOT make assump-
tions about or which do not apply to this project:

e Latency is zero.

Bandwidth is infinite.

The network is secure.

There is one administrator.

Transport cost is zero.

The network is homogeneous.

Zero latency is not assumed because the latency of the distributed sys-
tem is modeled by the firing time of each of the transitions. In the cases
where it counts we do not assume infinite bandwidth. However, it is difficult
to accurately model both the bandwidth limitation and the latency between
the clients and the server without making the model significantly harder to
understand. The current solution is a compromise between accuracy and
readability. BOINC handles all the network communication and carries the
burden of securing the distributed system against attacks. We do not model
these security mechanism because they have no direct impact on the perfor-
mance of the system. The “one administrator” and “zero transport cost”
assumptions fall outside the scope of this report. Put more plainly: We do
not care how this system is administered and how much the infrastructure
costs would be. As far as BOINC goes it does not care what platform the
server or clients run because it is able to supports most major operating sys-
tems and hardware platforms. Some additional assumptions are presented
later under the sections they belong to.

2.2 Server model

We begin by first modeling the server in this distributed computing system.
We also make the assumption that there is only one server, even though
BOINC can support more than one. The server has two “pipelines” so to

p req p res

ttr trtr

Paiv Prir

Liiv lirg
m m

Daist Deol

Figure 2: Petri net module for the distributed computing server

speak: The request pipeline and the response pipeline. In Figure [2| you can
see the complete server model.

The request pipeline begins with the place p;., onto which an application
may place a specific exact cover problem to be processed by the distributed
computing system. The specific problem is then transformed into a more
generic form by the transition ¢4 before it is placed in pg;,. From there the
problem is divided into several smaller problems by t4, and the resulting
piecesﬂ are placed in pg;s; to be distributed to the clients. The weight, m,
of the arc from %4, to pgs is the number of pieces the problem is divided
into.

The response pipeline starts with the place p.,; where the solutions from
the clients are placed. When all the solutions have arrived they are merged
together by t,,,, and the resulting solution is placed in pr4. The weight
of the arc from peo to t,rg Will also have to be m in order to ensure that
the merging process does not take place before all the solutions has arrived.
From p, the generic solution is transformed back into the domain of the
specific problem by ¢, and returned to the application in pyes.

2.3 Client model

Figure 3 on the next page| shows the Petri net of the compute clients. To
identify each client they are given a number ¢ from 1 to n. When tge;
is fired the HTTP GET request is send to the server and a piece of the

'BOINC uses the term “work units” instead of pieces, but it is essentially the same
thing.

Figure 3: Petri net module for the distributed computing clients

problem is returned to the client and placed in pjops, Which is a job queue.
tecomp,i 18 the computing program which processes each job from pjeps; one
at a time. This model assumes that the computing program is only able
to process one problem at the same time, even on multi-processor systems.
When a computation is complete the resulting solution is placed in pgo
and then sent to the server by t,usi. Pfree, is used to control the number of
simultaneous pieces that a client can work on at the same time.

2.4 Network model
ttx trx

D Drx

Figure 4: Petri net module for the distributed computing network

In an attempt to model the bandwidth limitation on the server side the
Petri net in Figure [4 has been designed. It is a primitive bandwidth throt-
tling device and with the correct firing times it should be able to regulate
the flow of data coming from and going to the server. t;, and p;; model the
transmit limit and ¢,, and p,, model the receive limit. It is assumed that
the network communication channel is full duplex?| and that the combined
network bandwidth of all the connected clients is equal to or larger than
the bandwidth on the server side. This means that we are assuming that
the bottleneck is on the server side, which is true in most cases where the

2Full duplex allows data to be sent and received at the same time.

number of clients is high. Modeling the individual bandwidth limitation for
each client and the overhead of the TCP/IP and HTTP protocols themselves
would result in an overly complex model.

2.5 Petri net definition

A Petri net graph (or Petri net structure) is a weighted bipartite graph
(P,T,A,w). P is the set of places, T is the set of transitions, A is the set
of arcs and w is the arc weight function. A complete system with one client
will look like Figure [5 on the next pagel If additional clients are added the
complexity steadily increases. Below we have defined the complete Petri net
model as shown in the figure.

P = {Preq; Press Prtrs Pdivs Pdists Deols Ptas Pras P frees Pjobss Dsol }
T = {tir, trirs tdivs tmrgs ti, tra, tgets teomps tput }
A = {(Pregs ter), (ttrs Pdiv)s (Pdivs taiv), (Ediv, Pdist)s (Peols tmrg)s (Bmrgs Prir),
(Prtrs trer)s (trirs Dres)s (Ddist, tix), (trae, Peol)s (Peas tget)s (tputs Pra)s
(tgets Pjobs)s (Djobss teomp)s (teomps Pfree)s (Pfrees tget), (teomps Psol)s
(Psol» put)}
W(tdivs Pdist) = M

(

WA\ Pcol 5 mrg) m

3 Simulation

We are going to use GPenSIM [5] version 2.1 to model and simulate the
distributed computing system. GPenSIM is a software package for MATLAB
which enables you to use all the powerful facilities for statistics and plotting
which MATLAB is known for.

3.1 Simulation parameters

To fully define the model a set of different parameters has to be defined.
These parameters are the firing times of the transitions, arc weights, number
of clients and the initial dynamicg]|

To be able to find the correct parameters we need to specify what prob-
lem we want DECS to solve. Lets say that we want to solve the 20-queens
problem. It should take about 12 hours of CPU time to solve this problem

3The initial dynamics/markings is the number and location of tokens at the start of
the simulation.

DPreq Dres

t tr trtr
Server Daiv DPrir
tdiv tmrg
m m
Pdist Pcol

Network

Client

Figure 5: A complete Petri net model for the distributed computing system

according to the NQueens@Home project [6]. Although they use a special-
ized algorithm instead of the generalized DLX algorithm used in DECS, we
assume that the running time is about the same.

For the number of clients we choose n = 12, meaning that if this was an
ideal system the problem would be solved in 1 hour. We want the clients to
use around 10 minutes to solve each piece of the problem so we divide the
problem into m = 72 pieces. The transformation of the specific 20-queens
problem to the DLX matrix takes 160 milliseconds so the firing time for t;,
is 0.160 seconds. The reverse transform, given that the number of solutions
is about 39 billions, takes 39 seconds so that the firing time for ¢, is 39.
Dividing the problem into 72 pieces in DECS gives a firing time of 0.12
seconds for ¢4;,. Merging the solutions in t,,,4 results in a firing time of 7.2
seconds. Since we model the solution of one problem we have to place one
initial token in py.eq.

Each of the problem pieces are 100 kilobit large and the server has a
upstream bandwidth of 400 kbps (kilobit per second). This will give us a
throughput of 4 pieces per second which means that the firing time of t,
must be 0.25 second. p;, should have a maximum number of tokens so that
it better reflects the correct bandwidth when no more HTTP GET requests
are being issued by the clients. We choose to set this maximum limit to 4,
which is the maximum number of pieces that can be send each second. The
downstream bandwidth of the server is 2000 kpbs and each of the solutions
has been compressed down to 8000 kilobit. The rate of packets downstream
will be 0.25 per second which results in a 4 second firing time of ¢,

Each of the clients has an average round trip time (RTT) to the server
of around 100 milliseconds. For HTTP this gives a latency of 2 x RTT+
the time it takes to transfer the file. The file transfer time has already been
calculated so we ignore it in this case. Since the RTT will usually vary a bit
we use a normal distribution with a mean of 200 milliseconds and a standard
deviation of 20 to generate random firing times for ¢4 and tp,;. We set the
firing time of t.omp by using a uniform distribution with a minimum of 8
minutes and a maximum of 12. We also put two tokens in py.e. to allow
each client to retrieve two pieces of work from the server.

3.2 Results

From Figure |6 on the following page| you can see that the primitive band-
width throttling is doing its job. It takes about 7 seconds to distribute the
initial 24 piecesﬁ from py;s to the clients.

A complete simulation in GPenSIM takes 364 steps and depending on
the random timing it finishes in about 67 minutes. Figure
shows a complete simulation which only took 63 minutes. You can

4Each of the 12 clients requests 2 pieces each to begin with because they have two
tokens in psree.

BD T T T T T T T T

T
- —&— DIST
. e
B0 i

a0 -

tokens

30 .

20 -

1

time (seconds)

Figure 6: Initial distribution during the first 10 seconds

clearly see the stages when each of the clients finish their work and request
a new piece from the server. Another simulation shown in Figure [8 on the
with the same parameters appears to have distributed the
distribute and collect operations more evenly in time. This would no doubt
have caused less stress on the server and its bandwidth, but unfortunately it
also hurts performance as it used 67 minutes in total to solve the problem.

BD T T T T T T T

7 —— pDIST]
—— pCoL

5 -

SEEE 4000

ED:ZID 2 M

time [seconds)

| |
DE a0 1000 1500

Figure 7: Complete simulation of the distribution and collection completed
in 63 minutes

tokens

| | |
1000 1500 2000 2
time (seconds)

Figure 8: Another simulation of the distribution and collection completed
in 67 minutes

4 Conclusion

More accurate simulation results could probably be achieved by eliminating
more of the assumptions and doing more research. The main challenge in
modeling this system was the distribution and collection mechanism and
making sure that the latency and bandwidth limitations were preserved.
The model could be made more complex by incorporating other aspects of
distributed computing as well. Simulating client failure or malicious clients
submitting incorrect data could be a possible extension. That would require
a certain piece of the problem to be sent to multiple clients for redundancy
and verification.

References

[1] J. M. Tjensvold. Generic Distributed Exact Cover Solver. URL http:

//decs.googlecode. com.

[2] D. E. Knuth. Dancing Links. In J. Davies, B. Roscoe, and J. Wood-
cock (editors) Millenial Perspectives in Computer Science, pages 187—
214. Palgrave, Houndmills, Basingstoke, Hampshire, 2000.

[3] BOINC - Berkeley Open Infrastructure for Network Computing. A soft-
ware platform for volunteer computing and desktop Grid computing used
by projects such as SETI@home., URL http://boinc.berkeley.edu/.

10

http://decs.googlecode.com
http://decs.googlecode.com
http://boinc.berkeley.edu/

[4] A. Rotem-Gal-Oz. Fallacies of Distributed Computing Explained. URL
http://www.rgoarchitects.com/Files/fallacies.pdf.

[5] Reggie Davidrajuh. GPenSIM. A general purpose Petri net simulator
for mathematical modeling and simulation of discrete-event systems in
MATLAB., URL http://www.davidrajuh.net/gpensim/.

[6] Universidad de Concepcin. NQueens@Home. URL http://nqueens.ing.
udec.cl/.

11

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.davidrajuh.net/gpensim/
http://nqueens.ing.udec.cl/
http://nqueens.ing.udec.cl/

	1 Introduction
	2 Model
	2.1 Assumptions
	2.2 Server model
	2.3 Client model
	2.4 Network model
	2.5 Petri net definition

	3 Simulation
	3.1 Simulation parameters
	3.2 Results

	4 Conclusion
	References

