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Chapter 1

Introduction

This report details the design and implementation of a distributed computing
system to solve exact cover problems. Donald Knuth’s Dancing Links (DLX)
algorithm [7] is used to solve the exact cover problem. Distributed computing
with this algorithm is accomplished by making use of the recursive nature of
DLX to split the problem into smaller pieces. The Generic Distributed Exact
Cover Solver (DECS) then takes advantage of a distributed computing mid-
dleware called BOINC [1] to handle the work distribution and result collection
process. The report explains in detail how the DLX algorithm works and some
concrete types of problems it can be applied to. It also explains how DLX is used
together with BOINC to construct a complete distributed computing system.

1.1 Related work

There are numerous implementations of the Dancing Links algorithm available
with and without source code. In addition to Knuth’s own implementation in
CWEB [8] a quick search found source code for Java, Python, C, C++, Ruby,
Lisp, MATLAB and Mathematica. Some of the implementations were generic
while others aimed for a specific application (mostly Sudoku). Common for all
these implementations is that none of them were made for parallel processing.

Alfred Wassermann developed a parallel version of Knuth’s algorithm in
[10] by using PVM [4] to solve a problem presented in Knuth’s original paper.
However, he only published the solutions to the problem and not the actual
implementation. The only available open source parallel version is written by
Owen O’Malley for the Apache Hadoop project [2] in May 2007. O’Malley’s
implementation uses the MapReduce framework [3] provided by Hadoop to do
the computations in parallel. The details of this implementation and how it
divides the problem into smaller pieces has not been documented.

1.2 Report organization

This report is organized into several chapters. Chapter 2 describes the Danc-
ing Links algorithm. Chapter ?? explains the distributed computing concept.
Chapter ?? discusses different aspects of the implementation. Chapter ?? de-
scribes the test results with the system and Chapter ?? concludes this report.
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Chapter 2

Dancing Links

Dancing Links (DLX) is an algorithm invented by Donald Knuth to solve any
exact cover problem. It was first described in [7] where he looks at the details
of the algorithm and uses it to solve some practical problems. Before we look
at the DLX algorithm in more detail we need to explain what an exact cover
problem is.

2.1 Exact cover

Exact cover is a general type of problem which hcan be applied to a wide
area of problems. It can be used to solve problems like N queens, polyomino
tiling, Latin square puzzles, Sudoku, set packing and set partitioning. For
more detailed information about how exact cover can be applied to N queens,
polyomino tiling, Latin square and Sudoku, see Section ??, ??, ?? and ??
respectively.

To represent an exact cover problem we use a matrix in which each element
is either zero or one (non-zero). This type of matrix is called a boolean, binary,
logical or {0,1}-matrix. We use “matrix” in the rest of this report to mean a
boolean matrix and “non-zero” to mean one since a boolean matrix can only
have elements zero and one. The idea is that each column in the matrix repre-
sents a specific constraint and each row is a way to fill some of the constraints.

For the general matrix

A =


a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...
am,1 am,2 am,3 · · · am,n


ai,j is an element in the matrix at row i, column j where ai,j ∈ {0, 1}. The
number of rows is m and the number of columns is n.

A subset of rows from a matrix is an exact cover iff (if and only if) each
column has exactly one non-zero (one) element. Let RA and RB be the set of
rows in matrix A and B respectively. If RB ⊆ RA then B forms the following
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matrix

B =


b1,1 b1,2 b1,3 · · · b1,n

b2,1 b2,2 b2,3 · · · b2,n

b3,1 b3,2 b3,3 · · · b3,n

...
...

...
. . .

...
bk,1 bk,2 bk,3 · · · bk,n


B is a reduced matrix of A where the number of rows k ≤ m. The number of
columns in A and B is always the same. The subset RB is an exact cover iff
the following equation is satisfied

k∑
i=1

bi,j = 1 ∀j ∈ {1, 2, . . . , n− 1, n}

In practical applications we are usually given an initial matrix A and tasked
with finding all the subsets of rows which are exact covers. For example the
following matrix 

1 0 0 0
0 1 1 0
1 0 0 1
0 0 1 1
0 1 0 0
0 0 1 0

 (2.1)

represents a specific exact cover problem. In this matrix {2, 3} is a valid solution
(exact cover) because the subset consisting of rows 2 and 3, and thus the reduced
matrix [

0 1 1 0
1 0 0 1

]
has exactly one non-zero element in each column. By adopting a trial and error
approach one can find that the full set of solutions for the matrix in (2.1) is
{{1, 4, 5}, {2, 3}, {3, 5, 6}}.

2.1.1 Generalized exact cover

A generalized form of the exact cover problem is sometimes better suited to solve
certain types of problems. The generalized cover problem can be translated
to an exact cover problem by adding additional rows, but translating in the
opposite direction is not always possible. The generalized cover problem divides
the matrix into primary and secondary columns. Each primary column in the
solution must have exactly one non-zero element, like before. However, each
secondary column in the solution can have either zero or one non-zero element,
instead of exactly one.

Let CP be the set of primary columns and CS the set of secondary columns
in matrix A and B. The subset of rows RB is an exact cover iff both of the
following equations are satisfied

k∑
i=1

bi,j = 1 ∀j ∈ CP ∧
k∑

i=1

bi,j ≤ 1 ∀j ∈ CS
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N queens (see Section ??) is one type of problem the generalized cover
problem can be applied to. Creating a secondary column for each diagonal on
the chess board will reduce the number of rows in the final matrix. Given a
smaller matrix the DLX algorithm will have to do less processing to find the
solutions which results in better performance. The DLX algorithm itself does
not require any modifications to solve generalized cover problems, but the matrix
construction procedure requires some minor adjustments (see Section ??).

2.2 Algorithm X

Exact cover is a type of problem known to be NP-complete. To find all the
solutions to an exact cover problem the most straight forward algorithm is
to check all possible sets of rows. Given a set we then check to see if there is
exactly one non-zero element in each column. However, as the size of the matrix
increases we will experience a combinatorial explosion on the number of possible
sets to test. The exact number of sets is 2m − 1 given a matrix with m rows.
The eight queens problem (see Section ??) which has a matrix consisting of 63
rows, gives an immense 9 223 372 036 854 775 808 sets. Given that only 92 of
these are valid solutions this simple algorithm can hardly be recommended.

Another approach, which is presented in Knuth’s paper, is Algorithm X (for
the lack of a better name). This backtrack algorithm uses a more intelligent
elimination method to “wriggle” its way through the matrix and find all the
solutions. Looking at matrix (2.1) we can easily determine that row 1 and 3 can
never be in the same set. They are in conflict with each other because both of
them have a non-zero element in the first column. Since there must be exactly
one non-zero element in each column we can rule out any set containing both
row 1 and 3.

Algorithm X uses similar logic to recursively traverse the search tree by
backtracking. A modified version of Knuth’s original algorithm is presented in
Algorithm 1. Changes are made to improve the readability, logical consistency
and to make it easier to compare with the Dancing Links algorithm. Algorithm
X is initially called with the matrix A and the column header list H. H is
initialized with the numbers 1, 2, . . . , n−1, n, where n is the number of columns
in A.

If H is empty the partial solution is an exact cover and the algorithm returns.
Otherwise, the algorithm chooses a column c and loops through each row r
which has a non-zero element in column c. Any conflict between row r and
the remaining rows are resolved at line 8 to 12. The algorithm then calls itself
recursively with the reduced matrix and column list. This continues until all
the rows with non-zero elements in column c have been tested, in which case all
the branches in the search tree have been traversed.

Any rule for choosing column c will produce all the solutions, but there are
some rules that work better than others. Knuth uses what he refers to as the
S heuristic, which is to always choose the column with the least amount of
non-zero elements. This approach has proved to work well in a large number of
cases so it is a reasonable rule to make use of in practice.

Using matrix (2.1) as an example, we wish to demonstrate how Algorithm
X works. The columns and rows have been numbered to make it easier to keep
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Algorithm 1 Algorithm X recursive search procedure.
1: procedure search(A,H)
2: if H is empty then
3: Print solution and return. {Base case for the recursion}
4: Choose a column c.
5: foreach row r such that ar,c = 1 do
6: Add r to partial solution.
7: Save state of matrix A and list H.
8: foreach column j such that ar,j = 1 do
9: foreach row i such that ai,j = 1, except i = r do

10: Delete row i from matrix A.
11: Delete column j from matrix A and list H.
12: Delete row r from matrix A.
13: search(A,H)
14: Restore state of matrix A and list H.
15: Remove r from the partial solution.

track of them when the matrix is modified.

1
2
3
4
5
6

1 2 3 4
1 0 0 0
0 1 1 0
1 0 0 1
0 0 1 1
0 1 0 0
0 0 1 0


We begin by choosing column 1. Looking at this column we choose row 1 where
there is a non-zero element. Our partial solution is now {1}. Row 1 only has
one conflicting row which is row 3, which has a conflict in column 1. We remove
column 1, row 1 and row 3 which results in the following matrix

2
4
5
6

2 3 4
1 1 0
0 1 1
1 0 0
0 1 0

 (2.2)

This time we choose column 2 and then row 2 so that the partial solution
becomes {1, 2}. Row 2 conflicts with all the remaining rows (row 5 in column
2 and row 4 and 6 in column 3). After all the conflicts have been resolved the
matrix itself is empty, but the column list H is not. Because there are no non-
zero elements left in the matrix the recursive call will return immediately (the
loop condition at line 5 is not satisfied) and matrix (2.2) is restored. This time
we choose row 5 which results in the partial solution {1, 5}. Row 5 conflicts
with row 2 in column 2 and by eliminating the conflicts we get the following
matrix

4
6

3 4[
1 1
1 0

]
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We choose column 3 and then row 4 which gives us the partial solution {1, 5, 4}.
After all the conflicts are resolved the matrix is completely empty along with
the column header list. This tells us that {1, 5, 4} is one of the solutions to this
problem.

The search tree in Figure 2.1 emerges as we continue in the same manner,
until all the solutions have been found. Each node i, j, for row i and column j,
indicates the choices made by the algorithm. The rectangular nodes is where
each of the solutions were found. The search tree is a binary tree as a result of
the small matrix used in this example so this behavior cannot be generalized.

2,2 5,2 2,2 5,2

6,34,3 6,3

3,1

root

1,1

Figure 2.1: Algorithm X search tree for the example matrix

One issue when trying to implement Algorithm X is that the state of the
matrix needs to be saved and restored multiple times during the backtrack
process. Each time the algorithm returns the old state must be restored before
another path can be explored. Searching through the matrix to find the non-zero
elements is also very time consuming if the matrix is stored as a two dimensional
array. To solve these problems Knuth introduced the Dancing Links algorithm.

2.3 Dancing Links

The Dancing Links (DLX) algorithm is based on Algorithm X, but it contains
some significant modifications which makes it more suitable for practical appli-
cations. DLX is based on a simple, yet powerful, technique which allows one to
reverse any operation made to a doubly-linked list. If x represents an element
in such a list then x.left and x.right points to the previous and next element
respectively. To remove element x from the list the following two operations are
applied:

x.right.left ← x.left
x.left.right ← x.right

(2.3)

Applying these two operations to the linked list in Figure 2.2 results in the
list in Figure 2.3. These operations modify the links pointing to element x so
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that an iteration through the list will no longer traverse through this element,
but instead skip right past it.

x

Figure 2.2: Doubly-linked list

x

Figure 2.3: Doubly-linked list with element x removed

When programming one might be tempted to set x.left and x.right to a null
value and delete the x object or let the garbage collector do its thing. However,
smart as that might seem it would prevent one from applying a second set of
operations. In [5] Hitotumatu and Noshita introduced a pair of operations which
allows one to insert an element back into the list in exactly the same place it
was removed from. The following two operations work as the inverse of the
operations in (2.3) by adding x back into the list.

x.right.left ← x
x.left.right ← x

(2.4)

Knuth makes use of the operations in (2.3) and (2.4) to maintain the state
information for the matrix. The x element is preserved so that the algorithm
can reverse the remove operations, which are used to reduce the matrix.

2.3.1 Data structure

DLX stores the matrix as a collection of several circular doubly-linked lists where
each non-zero value in the matrix is an element in the lists. Using this sparse
matrix representation saves a lot of memory because the number of zero elements
usually outnumber the non-zero elements. This advantage will normally grow
when the size of the matrix increases. As an example the N queens problem
for N = 10 has 396 non-zero elements, but they only account for 7.33% of the
total number of elements.

Each row and column in the matrix is represented by a separate list. In
addition the set of column headers is also stored in a list. Each element x in
the linked lists have six attributes: x.left, x.right, x.up, x.down, x.column and
x.row. The x.row attribute is an addition to Knuth’s original algorithm to en-
able detection of the row number. The first four attributes contains a pointer
to an element in the respective list. x.left and x.right belongs to a row list and
x.up and x.down belongs to a column list. x.column is a pointer to the column
header and x.row is a non-negative integer storing the row number of the el-
ement. A column header c has the additional c.name (column name/number)
and c.size (number of elements in column) attributes. Secondary column head-
ers used by the generalized cover problem have their c.left and c.right attributes
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pointing to c (itself). The special column header element h acts as a root ele-
ment for the rest of the data structure.

Figure 2.4 shows shows how the matrix in (2.1) can be represented using
this data structure. To avoid clutter the x.column links pointing to the column
headers are not displayed in the figure.

h
A

2

B

2

C

3

D

2

Figure 2.4: Sparse boolean matrix circular quad-linked list representation of the
example matrix

2.3.2 Algorithm

The DLX algorithm is very similar in nature to Algorithm X and in essence
the two algorithms work exactly in the same way. Given the example matrix
(2.1) the DLX algorithm will follow the same path as shown in Figure 2.1. The
difference is that DLX uses a specialized data structure and the operations in
(2.3) and (2.4) to save and restore the state of the matrix. Comparing the
pseudo code in Algorithm 1 and 2 reveals that they are very similar in nature.

The algorithm is initially called with k = 0 (recursion level 0) and h is
initialized with the contents of the matrix. See Section ?? for details on how
the contents of h is initialized. Printing a solution using the x.row attribute is
done by printing Oi.row for all i ∈ {1, 2, . . . , k}.

Column selection is done using the S heuristic, which picks the column with
the lowest value for c.size, as described in Knuth’s paper. Algorithm 3 simply
steps through each column header looking for the lowest size.

The cover(c) and uncover(c) algorithms are the main differences between
DLX and Algorithm X. The purpose of cover(c) is to remove column c from
the column header list and to resolve any conflicts in the column. It uses the
operations in (2.3) to remove the conflicting elements from the column lists.
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The cover(c) algorithm also increments the value of updates which is used to
measure how many operations the search algorithm requires to complete. One
update equals four link modifications or one application of both operation (2.3)
and (2.4). The size column header attribute is maintained by both the cover(c)
and uncover(c) algorithms so that the S heuristic works properly. Algorithm 4
contains the pseudo code for the cover procedure.

The uncover(c) algorithm restores the state of the matrix using the oper-
ations in (2.4). Notice that Algorithm 5 walks up and left in the lists while
Algorithm 4 walks down and right. This ensures that the elements are put back
in the reverse order in which they were removed. This is the only way to make
sure that all the links are restored to their original state.

2.4 Parallel Dancing Links

To be able to solve more complex exact cover problems the solution process must
be distributed to a larger number of computers. To accomplish this we must first
break the problem into smaller pieces. In [9] Maus and Aas investigates recursive
procedures as the unit for parallelizing. They introduce some techniques on how
to split the recursion tree which can be directly applied to the search tree in
DLX. The main idea is that the algorithm is first run in a breath-first mode so
that the search tree is explored one level at a time. When a certain number of
nodes has been discovered the search stops and the nodes are distributed to a
set computers and solved in parallel.

The search procedure of DLX is a backtrack algorithm which explores the
search tree depth-first. Making this a breath-first algorithm can be achieved by
not allowing it to proceed deeper than a certain level in the search tree. When
the given level is reached the partial solution O is printed. O can then be used
to initialize a separate process by running DLX on a different computer (or
another processor on the same computer). As long as the predefined depth d
is not too deep or shallow the partial solutions can be used to efficiently solve
the exact cover problem in a distributed manner. If d is too deep (high) the
algorithm will find all solutions before the splitting happens, and if it is too
shallow (low) the number of partial solutions might be too low to be of any use.
Adding line 10 to 12 in Algorithm 6 is the only changes required to make the
original Algorithm 2 support this scheme.

Each partial solution produced by psearch(k, d) can be used as an initial-
ization vector for the modified search procedure search init(O) in Algorithm 7.
O is the initialization vector and O.size is the length of the vector (number of
rows in the partial solution). The initialization vectors and the matrix can be
distributed and the modified search procedure can be run in parallel on each
computer. If required each computer can do further splitting locally to take
advantage of multiple processors.

This approach does not guarantee that each initialization vector provides the
same amount of work. Unfortunately there is no straight forward method to
estimate the complexity of the subtree given by a specific initialization vector.
In [6] Knuth uses a Monte Carlo approach to estimate the running time of
a backtrack algorithm. By doing random walks in the subtree he is able to
estimate the cost of backtracking. This approach would be worth investigating
for a future version of DECS.
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Algorithm 2 Dancing Links recursive search.
1: procedure search(k)
2: if h.right = h then
3: Print solution and return. {Base case for the recursion}
4: c← choose column()
5: cover(c)
6: foreach r ← c.down, c.down.down, . . . , while r 6= c do
7: Ok ← r {Add r to partial solution}
8: foreach j ← r.right, r.right.right, . . . , while j 6= r do
9: cover(j.column)

10: search(k + 1)
11: foreach j ← r.left, r.left.left, . . . , while j 6= r do
12: uncover(j.column)
13: uncover(c)

Algorithm 3 Column selection using the S heuristic.
1: function choose column()
2: s←∞
3: foreach j ← h.right, h.right.right, . . . , while j 6= h do
4: if j.size < s then
5: c← j
6: s← j.size
7: return column c

Algorithm 4 Cover column c.
1: procedure cover(c)
2: c.right.left← c.left
3: c.left.right← c.right
4: foreach i← c.down, c.down.down, . . . , while i 6= c do
5: foreach j ← i.right, i.right.right, . . . , while j 6= i do
6: j.down.up← j.up
7: j.up.down← j.down
8: j.column.size← j.column.size− 1
9: updates← updates + 1

Algorithm 5 Uncover column c.
1: procedure uncover(c)
2: foreach i← c.up, c.up.up . . . , while i 6= c do
3: foreach j ← i.left, i.left.left, . . . , while j 6= i do
4: j.column.size← j.column.size + 1
5: j.down.up← j
6: j.up.down← j
7: c.right.left← c
8: c.left.right← c
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Algorithm 6 Dancing Links parallel recursive splitter.
1: procedure psearch(k, d)
2: if h.right = h then
3: Print solution and return. {Base case for the recursion}
4: c← choose column()
5: cover(c)
6: foreach r ← c.down, c.down.down, . . . , while r 6= c do
7: Ok ← r {Add r to partial solution}
8: foreach j ← r.right, r.right.right, . . . , while j 6= r do
9: cover(j.column)

10: if k ≥ d and h.right 6= h then
11: Print partial solution. {Prevent further recursion}
12: else
13: psearch(k + 1)
14: foreach j ← r.left, r.left.left, . . . , while j 6= r do
15: uncover(j.column)
16: uncover(c)

Algorithm 7 Dancing Links search initialization.
1: procedure search init(O)
2: for k ← 0 to O.size− 1 do
3: c← choose column()
4: cover(c)
5: r ← Ok

6: foreach j ← r.right, r.right.right, . . . , while j 6= r do
7: cover(j.column)
8: search(O.size) {Do actual search}
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